K4
$11 / 2: W 14$ North Carolina State Library
$\%$ NORTH CAROLINA
2 DEPARTMENT OF TRANSPORTATION

WAKE COUNTY THOROUGHFARE PLAN

THOROUGHFARE PLAN

for
WAKE COUNTY, NORTH CAROLINA

Prepared by the:
Thoroughfare Planning Unit Planning and Research Branch Division of Highways N. C. Department of Transportation

In cooperation with:
The county of wake The Federal Highway Administration U. S. Department of Transportation

September, 1981

Persons Responsible for this Report:
Planning and Research Manager: Thoroughfare Planning Engineer: Project Engineer:
Engineering Technician:
Typist:
T. L. Waters
M. R. Poole
R. T. Blackwood
A. C. Anderson Delwyn King

Digitized by the Internet Archive in 2012 with funding from LYRASIS members and Sloan Foundation

TABLE OF CONTENTS

PAGE
CEAPTER
I. INTRODUCTION 1
II. COUNTY THOROUGGFARE PLANNING PRINCIPLES 3
III. WAKE COUNTY - POPULATION, LAND USE, AND TRAFFIC 11
IV. ANALYSIS CF EXISTING MAJOR ROAD SYSTEM 19
V. TEOROUGEFARE PEAN 25
VI. DESIGN REQUIREMENTS 35
VII. CONSTRUCTION PRIORITIES AND COST ESTI- MATES 41
VIII. IMPIEMENTATION 49
APDENDIX A - TEOROUGEFARE PIAN STREET TABULATION AND RECOMMENDATIONS 53
APPENDIX 3 - RECOMMENDED DEEINIFIONS AND DESIGN STANDARDS FOR SUBDIVISION ORDINANCES 61
-

LIST OF FIGURES

PAGE
EIGURE

1. IDEALIZED TEOROUGEFARE PLAN 5
2. SCEEMATIC ILLUSTRATION OF FUNCTIONALLY CLASSI- FIED RURAL HIGEWAY NETWORK 9
3. GECGRAPEIC LOCATION 13
4. 1969, 1974, AND 1979 ANNUAE AVERAGE DAIEY TRAFEIC VOLUMES 15
5. TEOROUGEFARE PLAN 27
6. TYPICAL THOROUGHFARE CROSS SECTIONS 37

List of tables

PAGE

TABLE

1. RURAL SYSTEM ROAD MILEAGE DISTRIBUTION 7
2. VEEICIE REGISTRATION 12
3. EISTORICAL AND PROJECTED ANNUAL AVERAGE DAIIY TRAFEIC VOLUMES FOR SELECTED LOCATIONS ON TEE WAKE COUNTY EIGEWAY SYSTEM 17
4. MINIMMM LEVEIS OF SERVICE FOR ROADS AND EIGE- WAYS IN WAKE COUNTY 35
5. MINIMUM TOLERABLE LANE WIDTES (IN EEET) 36
6. CONSTRUCTION PRIORITIES AND COST ESTIMATES 42

I. INTRODUCTION

The economic and social well-being of a recion is largely dependent upon an adequate overall transportation system. unless people and goods are able to move from one place to another quickly and conveniently, the area becomes dormant and unable to develop to its full economic potential. Realizing this key role that highways play in this transportation system, it has become increasingly necessary to develop a good continuous network of national, state, and regional highways which can efficiently handle present and anticipated traffic needs.

Wake County has a thoroughfare plan that was cooperatively prepared in 1972 by the county and the North Carolina state Gighway Commission. Due to the county's rapid and expanding growth in recent years, it was mutualiy agreed to reevaluate and update the existing plan. The revised plan is better suited for meeting the current and future travel needs of the county.

The proposed system of thoroughEares was developed following the basic principles of county thoroughfare planning as described in chapter II. Thoroughfares were located based upon field investigations, aerial photography; existing and anticipated land use, population distribution, and topographic conditions. The plan advocates those improvements which are felt to be essential for proper traEfic circulation within the current planning period (1980-2000). The plan does not attempt to modify proposed municipal thoroughfare plans already developed for the municipalities of Raleigh-Cary-Garner, FuquayVarina, Apex, Wake Forest, Wendell, and zebulon.

Proposed improvements within the county plan will be primarily the responsibility of the North Carolina Department of Transportation. Bowever, wake County through the use of subdivision and zoning controls can do much toward the implementation of the plan. Thus, it is desirable that the plan be Eomally approved by both the county and the Department of Iransportation to serve as a mutual official guide in the development of the thoroughfare system.

II. COUNTY THOROUGHFARE PLANNING PRINCIPLES

Purpose of Rlanning

There are many benefits to be gained from thoroughfare planning, but the primary objective is to assure that the road system will be progressively developed in such a manner as to adequately serve future travel desires. Thus, the cardinal concept of thoroughfare planning is that provisions be made for street and highway improvements so that as needs arise feasible opportunities to make improvements exist.

The major benefits derived from thoroughfare planning are: (1) Each road or highway can be designed to perform a specific function and to provide a specific level of serrice. This permits savings in rights-of-way, construction, and maintenance costs, protects residential neighborhoods, and encourages stability in travel and land use patterns. (2) Local ofEicials are informed as to future improvements. Developers can design subdivisions to function in a non-conflicting manner. Schocl and park officials can better locate their facilities. Irretrievable damage to property values and community appearance, as is sometimes associated with improvements programs, can be minimized.

County Thoroughfare Planning Concept

Streets, roads, and highways perform two primary func-tions--they provide traffic serfice and land serrice. These two functions when combined are basically incompatible. The conflict is not serious if both traffic and land serrice demands are low. But when traffic volumes are high conflicts created by uncontrolled and intensely used abutting property result in intolerable traffic flow friction and congestion.

The underlying concept of the thoroughfare plan is that it provides a functional system of streets, roads and highways which permit travel from origins to destinations with directness, ease, and safetr. Different elements in the system are designed and called on to perform specific functions and levels of serrice, thus minimizing the traffic and land serrice conflict.

Within the county plan elements are considered to be either urban or rural. In the urban planning area, the local municipality generally has planning jurisdiction. Outside the urban planning area, the county has planning jurisdiction. In those urban areas where no urban thoroughfare plan has been developed, elements are generally considered to be rural and under the planning jurisdiction of the county. When a thoroughfare plan is developed for an urban area that has not previously had a plan, then the area defined by that plan would
be considered urban and come under the planning jurisdiction of the municipality.

Within the urban and rural systems, thoroughfare plan elements are classified according to the specific function which they are to perform. A discussion of the elements and functions of the two systems follows:

Urban Thoroughfare Classification System

In the urban thoroughfare plan, elements are classified as either local access streets, minor thoroughfares or major thoroughfares. Due to the limited amount of detail that can be shown on a county thoroughfare plan, only urban major thoroughfares are normally shown. The major thoroughfare system within urban areas can be divided into four categories: radial streets, crosstown streets, loop streets and bypasses (Figure 1).

Radial Streets: Radial streets provide for direct trafEic movement Detween the central area and outlying areas. This is a major movement in most cities and the economic strength of the central area depends heavily on the adequacy of the radial thoroughfares.

The Crosstown system: If all radial streets crossed in the central area, an intolerable congestion problem would result. To avoid this problem, it is very important to have a system of crosstown streets which forms a loop around the central business district. These streets route traffic along the border of the central area as it moves from origins on one side to destinations on the other. The system also allows central area traffic to circle the central area and enter near its destination. The effect of a good crosstown system is to free the central area of crosstown traffic, thus permitting the central area to better function in its role as a pedestrian shopping area.

The Loop System: Loop streets move traffic between suburban areas of the city. Although a loop may completely encircle the city, a typical trip would be from an origin near a radial thoroughfare to a destination near another radial thoroughfare. Loop streets do not necessarily carry heavy volumes of traffic, but they function to help relieve central area congestion and shorten travel times between suburban areas. There may be one or more loops, depending on the size of the urban area, and they are generally soaced one-half mile to one mile apart, depending on the intensity of land use.

The Byoass: Bypasses function to carry traffic through or around the urban area. They are usually designed to rural highway standards with control of access. The general effect of the bypass is to expedite the movement

FIGURE I

of through trafific and to lessen traffic congestion within the city. Occasionally a low traffic volume bypass can be designed to function as a portion of an urban loop.

Rural Arterial Classification System

The rural system consists of those facilities outside the urban thoroughfare planning area boundaries. They are classified into Four major systems: principal arterials, minor arterials, major and minor collector roads, and local roads. Table 1 indicates generally accepted statewide mileage on these systems.

Table 1. Rural System Road Mileage Distribution

Systems	Percentage of Total Rural Miles
Principal arterial system	$2-4$
Principal arterial system	
plus minor arteriai road	
system	$6-12$
collector (major plus minor)	
zoad system	$20-25$
Local road system	$65-75$

Eigure 2 gives a schematic illustration of a functionally classified تural highway system.

Rural Principal Arterial System: The Jural principal arterial system consists of a connected network of continuous routes which serve corridor movements having trip lengths and travel density characteristics indicative of substantial statewide or interstate travel. The principal arterial system should serve all urban areas of over 50,000 population and a large majority of those with a population greater than 5,000. The Interstate System constitutes a significant portion of the principal arterial system.

Rural Minor Arterial System: The minor arterial system in conjunction with the principal arterial system Eoms a network which links cities, larger towns, and other major traffic generators such as large resorts. The minor thoroughfare system generally serves interstate and intercounty travel and serves travel corridors with trip lengths and travel densities somewhat less than the principal arterial system.

Rural Collector Road System: The rural collector soutes generally serve travel of primarily incracounty zather than statewide importance and constitute those routes on which predominant travel distances are shorter than on the arterial routes. This sustem is subclassified into major coliector roads and minor collector roads.

Major Collector Roads: These routes (1) provide service to the larger towns not directly served by the bigher systems and to other traffic generators of equivalent intracounty importance, such as consolidated schools, shipping points, county parks, important mining and agricultural areas, etc; (2) link these places with neariy largez Eowns or cities, or with zoutes of higner classizication; and (3) serve the more important intracounty =ravei corridors.

Minor Coliector Roads: These routes (1) collect ErazErc Enom local roads and bring all developed areas within a zeascnable distance of a coliector road; (2) provice serfice to the remaining smaller communities; and (3) link the locally important traÉEic generators with their maral hinteriand.

Rural Local Road Sustem: The local soads comprise all roads not on one ot the higher systems.

LEGEND

CITIES AND TOWNS

III. WAKE COUNTY - POPULATION, LAND USE, AND TRAFEIC

Wake County lies in the approximate center of North Carolina (Figure 3), and is on the eastern border of the Piedmont section of the state. It contains 864 square miles of rolling terrain that is generally well drained. The elevation across the county varies from 140 to 545 feet above sea level. The cultivated fields are interspersed with forest pine and hardwoods, all of which have been extensively lumbered.

The largest city in the county is Raleigh, the state's capital, which has a 1980 population count of 149,771. The city itself is historically unique in that it was planned from its beginning to be the state capital.

Rail transportation is provided to the county by Seaboard Coast Line and Southern Railways. Commercial air service is provided via Raleigh Durham Airport.

Population Trends

The population count for 1980 in Wake County is $300,833$. This is a 78% increase from 1960 and a 31% increase from 1970.

The major population concentrations are in Raleigh, Cary, and Garner. Cary and Gamer experienced an incredible 183% and 94% population increase since 1970 . The once rural areas of the county, especially to the north are expected to grow at an above average rate in the future. Recent projections* place the year 2000 population for wake County at 447,237.

Land Use
The Research Triangle Park is a significant area of employment for residents within the county and there is considerable travel to and from the Park by employees residing in Raleigh, Cary, and other areas.

Major commercial and regional shopping areas are Crabtree Valley, North Eills, Cameron Village, Tryon Eills, Raleigh Mall, Cary Village Mall, South Hills also in Cary, and proposed Regency Park. Extensive development of offices and apartments have developed around these commercial centers.

Major public and semi-public land uses are the State Governmental Offices in central Raleigh, North Carolina State University located in west Raleigh, and the Raleigh-Durham Airport, and William 3. Umstead State Park located west of Raleigh.

[^0]The Towns of Cary and Garner have long functioned as bedroom type communities to Raleigh with people residing in these two towns and working in Raleigh. The Towns of wake Forest, Fuquay Varina, Apex, Wendell, and Zebulon have also tended in this direction. More recently, industrial development has begun to develop along the transportation corridors between Raleigh and the outlying towns. Examples are Shearon Harris Nuclear Power Plant, Mini City, and the wakefield Earm Industrial Park. This later trend has mitigated somewhat the trend toward the development of the outlying towns as primarily bedroom communities.

The Raleigh-Cary-Garner urban area has experienced a rapid and accelerating urban growth during the past decade. There has also been a noted trend toward the development of a multi-centered urban area. There is no indication that these trends will be altered in the foreseeable future.

The rapid urban growth and extensive development along travel corridors between the Raleigh-Cary-Garner urban area and the outlying towns will place an increasingly heavy burden on radial highways during the design period.

Traffic

A comparison of 1969, 1974, and 1979 average annual daily traffic volumes (ADT) on selected major highways in Wake County are shown in Figure $4 . \quad$ On the average, the ADT's doubled in the ten year period throughout the county. Eistorically in North Carolina ADT's double over a twenty year period. So Wake County is experiencing a significant growth rate in traffic volumes.

Motor vehicle registrations in Wake County for 1969, 1974, and 1979 are given in Table 2.

Table 2. Vehicle Registrations

Year	1969	1974	1979
Autos	110,136	159,179	202,642
Trucks	35,321	44,168	54,533
Total	145,457	203,347	257,275

GEOGRAPHIC LOCATION

$$
5 x_{1020}
$$

AVERAGE DAILY TRAFFIC VOLUMES

LEGEND:

YEAR ALTT VOLUME
$\frac{1979}{1974}=\frac{O C D O 0}{190}$
$=\underline{0 C O}$
$1969=0000$
$N A=$ NOI AVAILABLE
URBAN PLANR ING
CORDON - -

WAKE COUNTY
NORTH CAROLINA

[^1]

Auto registrations in Wake County increased at an above average rate of 84% over the ten year period, while truck registrations increased 55% which is about the state average.

On the basis of the past trends examined in this chapter: population, land use, ADT counts, and vehicle registrations, it appears Wake County will experience considerable increases in traffic volumes during the 1980-2000 planning period.

As a result of this growtin, it was deemed necessary to estimate traffic volumes for the year 2000, so that the road system in the county could be analyzed as to its ability to maintain adequate service. Projected volumes for critical highway sections appear in Table 3.

The volumes were developed initially by using linear regression analysis on the historic ADT trends. They were then compared on a township level to expected population growth, anticipated land use (commercial and residential), and forecasted vehicle registrations. The straight line projections were then adjusted, as a zesult of the comparison, to reflect a more representative volume.

Table 3

Eistorical and Projected Annual Average Daily Trafinc Volumes for selected Locations On The wake County Eighway System				
Location	1959	1974	1979	$2000^{\text {a }}$
I-40 at Durham County	NA	13,000	15,400	30,000
US 70 at Durham County	15,600	17,200	14,200	23,000
US 70 at Turkey Creek	NA	NA	19,700	31,000
US 70 at Johnston Creek	9,800	NA	15,500	23,000
US 54 at Chatham County	3,200	3,500	4,800	7,000
US 64 at $S R 2516$ (Eodge Rd.)	13,000	NA	23,100	43,000
US 64 at US 64 Bus. (Wendell)	10,100	NA	20,000	38,000
US 401 at Middle Creek	7,700	9,100	10,100	16,000
US 401 at SR 2766	11,100	13,100	20,800	35,000
US 401 at Rolesville	3,500	5,400	6,900	13,000
US 1 at SR 1134 (EOrton Rd.)	2,950	NA	3,000	7,000
US 1 at Marshall Village	7,100	9,000	10,500	23,800
NC 54 at Durham County	4,300	NA	3,500	4,000
NC 55 at Durham County	2,700	NA	5,100	10,000
NC 55 at Apex Planning cordon	2,800	3,700	5,000	20,000
NC 42 at SR 1006 (01d Stage Rd.)	1,100	NA	1,900	4,000
NC 50 at Johnston County	3,200	4,300	4,700	3,000

Table 3 (continued)

| Location | 1969 | 1974 | 1979 | $2000^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NC 50 at SR 1829 (Strick- | | | | |
| NC 5nd Rd.) | 1,500 | 2,200 | 3,700 | 7,000 |
| NC 98 at Dranvilie County | 1,450 | NA | 2,400 | 4,000 |
| NC 98 at Nake Eorest | 1,550 | 2,000 | 2,100 | 3,000 |
| Planning Cordon | 1,700 | 2,200 | 2,900 | 4,500 |
| NC 96 at Frankin County | 500 | NA | 1,000 | 2,500 |
| NC 96 at Johnston County | 770 | NA | 1,000 | 2,000 |
| NC 97at SR 2329 (Lizard | 7,400 | NA | 4,600 | 2,000 |
| Lick Rd.) 97 | 510 | 700 | 800 | 1,300 |

astimated
NA Not Available

IV．ANAIYSIS OE EXISTING MAJOR RCAD SYSTEM

An assessment of the existing highway netiork outside tie urban planning areas was made to detemine if it could adequate－ ly handie the traizic demands that are being placed upon iた． One phase of this assessment was a volume－capaciey analysis． Based on levels of service（operating speeds）and oarement widths，the practical capacities of the major roads in the county were detemined（Appendix A）．When the existing vol－ umes（Eigure 4）were compared to those capacities，it was found that the Eollowing roads in the county were experiencing capacity problems：

1．US 401 Erom SR 2042 （EOX Rd．）to SR 2224（Mitchell Mill Rd．）
2．NC 50 Erom SR 2562 （New Rand Rd．）to SR 1010 （Old NC 42）
3．NC 55 between Aper and Euquay
The estimates of year 2000 trafミic（Table 3）were then compared to the practical capacities to detemine future defi－ ciencies．It is anticipa＝ed that the Eoliowing sections of roads will be over capaci $=1$ by the design year（2000）．

```
1. US 1
                From Apex Planning Corcion \(=0\) Chatham County
2. US 64
        Erom Chatham County to NC 55
        Erom the Neuse Siver to \(\operatorname{sR} 2233\) (Nade Earnis Rd.)
    3. US 34 Jusiness
        Erom Nendell Planning Cordon to SR 2348 (0i1 Mill
        Rd.)
    ‥ US 201
        Erom SR 2042 (EOX Rd.) to E=anxiis County
    5. NC 50
        Erom Raleigh 2lanning Corcon to NC 98
    6. NC 54
        Erom north Morrisville city iimies 50 SR 1762
        (Wilson Rd.)
    7. NC 55
        Durian County to Earnetに Counti
    8. NC 98
        From SR 1917 (Earrison Rd.) to SR 1928
    9. SR 1005 (Six Eorks Rd.)
        Erom Raleigh Zlanning Corion to NC 98
10. \(5 R 1006\) (Old Stage Rd.)
        From sR 271: (Eud EuEEaloe Rd.) to williams Cross-
        =oads
11. SR 1007 (P001e Rd.)
        Erom SR 2636 to SR 2516 (Eodge Rd.)
    12. SR 1010 (Old NC 42)
        Erom SR i379 (Perny Rd.) to NC 50
13. SR 1371 (Lake wheeler Rd.)
                        Erom Yates Mill ?ond to SR 1375 (Simpkins ad.)
```

14. SR 1375 (Simpkins Rd.)

From US 401 to SR 1010 (Old NC 42)
15. SR 1829 (Strickland Rd.)

From SR 2000 (Falls of the Neuse Rd.) to Leesville
16. $S R 2000$ (Falls of the Neuse Rd.)

SR 1829 (Strickland Rd.) to NC 98
17. SR 2215 (Buffaloe Rd.)

From SR 2931 to SR 2217 (Allen Store Rd.)
There are a number of major roads in the county that have widths of 16 and 18 feet. Standards established by the American Association of State Highway and Transportation Officials (AASFTO) set 20 feet as a minimum width with 24 feet as a preferred width. However, because of the substantial cost of upgrading all secondary roads to AASHTO standards, narrower widths are tolerated depending upon traffic volumes (see Table s, page 36). The roads on the thoroughfare plan that have inadequate and intolerable width deficiencies are listed in Appendix A. The minimum widths needed to bring them in line with tolerable AASHTO standards are given as recommended cross sections.

Traffic Safety

Traffic accicent records are of assistance in locating problem areas on the highway system. The TraiEic Engineering Branch of the North Carolina Department of Transportation publishes each year a safety program listing. In 1979 the list contained the 677 highest accident locations in the state. A ranking of one is the most hazardous location whether by number of accidents or severity of injuries or property damage. The following is a list of high accident locations in wake County and their rank in the state.

General Location

Priority Number

SR 1010 at SR 1300 4
NC 50 at SR 1829 (Strickland Rd.) 14
SR 1006 at SR 2717 16
US 401 at NC 42-55-SR 2795 82
US 1 at SR 2006 110
US 1 at SR 2013 119
US 70 at SR 2558 126
SR 1009 at SR 1348 159
US 70 at SR 2555 235
US 401 at SR 2782 237
US 64 at SR 2233 263
US 70-NC 50 at SR 2538-2623 258
NC 54 at SR 1664 281
US $70-401-N C 50$ at SR 1370-2623 332
US 401 at SR 2538 340
US 64 (Beltline) at US 64 (New Bern Ave.) 394
US 64 at SR 2049 466
US 1 at SR 2108 (New Hope - Millbrook Rd.) 480
US 70-NC 50 at SR 2788 650

Bridges are a vital and unique element of a highway system. First, they represent the highest unit investment of all elements of the system. Second, any inadequacy or defect in a bridge reduces the value of the total investment. Third, a bridge presents the greatest opportunity of all potential highway failures for disruption of community welfare. Finally, and most important, a bridge represents the greatest opportunity of all highway failures for loss of life. For these reasons it is imperative that bridges be constructed to the same design standards as the system of which it is a part.

In 1975 the North Carolina General Assembly initiated a special fund for a State Bridge Replacement Program. Five million dollars per year have been budgeted for this purpose since 1975. Related legislation directed the Department of Transportation to replace or remove from the highway system all through truss bridges with spans over 125 feet in length and roadway widths of less than 12 feet. Thus, bridges of this type were assigned high priority in the development of this program.

With nearly all of the narrow truss bridges replaced or identified for removal, the new thrust of the program has been directed toward improving the state bridges with posted load restrictions. These restrictions require buses to unload before crossing and in some cases they must be rerouted requiring substantial additional travel.

Bridges selected for replacement under this program represent the most critical statewide needs as they have been identified at this time. Also, the Governor's Blue Ribbon Commission appointed to assess the state's transportation needs and financing, just recently, recommended the following design standards for bridge replacement:

Arterial Bridges
Replace or rehabilitate all bridges with a width less than the approach pavement width plus 8^{\prime} or posted less than legal load limit.

Collector Bridges

Replace or rehabilitate all bridges with a width less than the approach pavement width plus 4 ' or posted less than legal load limit.

Local Bridges

Replace or rehabilitate all bridges with a width of 16^{\prime} or less or unable to serve school buses.

The bridges in Wake County that do not meet these standards are listed below.

	Route	Eeature intersected
1.	US 64 Business	Little River
2.	NC 97	Moccasin Creek
3.	SR 1001	Moccasin Creek
4.	SR 1005	Upper Barton's Creek
5.	SR 1006	Swift Creek
6.	SR 1006	Middle Creek
7.	SR 1006	Black Creek
8	SR 1007	Poplar Creek
9.	SR 1010	Noriolk Railway
10.	SR 1101	Norfolk and Southern Rairroad
11.	SR 1115	Cary Branci
12.	SR 1127	Eittle white Oak Creek
13.	SR 1153	Little Branch Creek
14.	SR 1160	? rong Beaver Creek
15.	SR 1301	Middle Creek
16.	SR 1375	Middle Creek
17.	SR 1375	Swift Creek
18.	SR 1379	Swift Creek
19.	SR 1393	Bassal Creek
20.	SR 1613	Crabtree Creek
21.	SR 1615	Durina and Southenn Railway
22.	SR 1839	Sycamore creek
23.	SR 1909	Horse Creek
24.	SR 1942	Smiths Creek
25.	SR 2006	Branch Creek
25.	SR 2006	Perry Creek
27.	SR 2049	Reedy Creek
28.	SR 2049	Smiths Creek
29.	SR 2049	Tom Creek
30.	SR 2217	Beaverdam Creek
31.	SR 2320	BuEfalo Creek
32.	SR 2329	Hominy Creek
33.	SR 2352	Little River
34.	SR 2751	Terrible Creek

V. THOROUGHFARE PLAN

The recommended thoroughfare plan for wake County is shown in Figure 5. Elements of the plan are initially classified as urban or rural. The areas around Raleigh-Cary-Garner, Apex, Fuquay, Wendell, Zebulon, and Wake Forest are delineated as urban thoroughfare planning areas since mutually approved thoroughfare plans are in effect for these municipalities.

Only major thoroughfares classified as to either freeway or other, existing or proposed, are shown within the urban thoroughfare planning areas in Figure 5. This was necessary due to the limited amount of detail that can be shown on the county level.

Principal Arterials

The principal arterial routes in Wake County that will serve primarily interstate and statewide travel are as follows:

1. I-40 - Including the proposed Raleigh to Benson connector
2. US 1 - Sections not already four-laned will need to be widened by the year 2000 from NC 55 to the Chatham County line.
3. US 64 - The section from Knightdale to the Neuse River should be widened to 6 lanes and the section from NC 55 to the Chatham County line will need to be four-laned.
4. US 64 - US 64 New location. From US 64 Business near Wendell to Raleigh southern Beltline at SR 2544 (Sunnybrook Rd.).
5. US 70 - From proposed I-40 (to Benson) to the Johnston County line.
6. Proposed Outer Loop.
7. US 264

Minor Arterials

The minor arterials in conjunction with the principal arterial system form a network whichlinks the cities and larger towns of the region. The minor arterial routes that are included in the plan are as follows:

1. US 70 - West of Raleigh.
2. US 401 - From Raleigh to Harnett County via proposed US 401 Bypass around Fuquay.
${ }^{1}$ For all the following recommendations, consult Chapter VII and Appendix A for more explicit details.

The rural collector routes will serve primarily intracounty travel. The major collector roads will suppiement the principal arterial and minor arterial systems by providing an interconnecting network between smaller population centers and connecting the smaller population centers to the arterial routes. The minor collector roads will collect traffic from the local roads and carry it to the higher system roads. Proposed major and minor collector roads of wake County are as follows:

Major Collector Roads

1. US 64 Business - From US 64 to Wendell Planning Area and from Wendell Planning Cordon at Little Creek to Zebulon Planning Cordon at SR 2348 (Oil Mill Rd.). The latter section will need four lanes.
2. US 264A - From Zebulon Planning Cordon to Johnston County.
3. US 401 - From Raleigh Planning Cordon to Franklin County, and from Fuquay Planning Cordon to Harnett County. Four lanes will be required from SR 2042 (Fox Rd.) to Franklin County Line.
4. NC 39 - From Franklin County to Johnston County.
5. NC 42 - From Johnston County to Harnett County minus Fuquay Planning Area.
6. NC 50 - The section from Strickland Rd. (SR 1829) to NC 98 will need to be 4-laned.
7. NC 54 - From Durham County to Raleigh Planning Cordon at SR 1762 (Wilson Rd.). The section from the north Morrisville city limits to wilson Rd. will need four lanes.
8. NC 55 - From Durham County to Harnett County minus the Apex and Fuquay planning areas. The entire route will be over capacity and need four lanes.
9. NC 96 - From Franklin County to SR 2337 (John Borrow Rd.) and from Zebulon Planning Cordon at Johnston County.
10. NC 97 - From US 64 Sus. to Franklin County minus Zebulon Planning Area.
11. NC 98 - Four lanes will be needed from SR 1917 (Harrison Rd.) to the proposed NC 98 bypass in Wake Forest.
12. SR 1003 (Eagle Rock Rd.) From US 401 to Johnston County.
13. SR 1004 (Old US 70) - From Raleigh Planning Cordon at SR 2560 (Auburn Rd.) to Johnston county.
14. SR 1005 (Six Forks Rd.) - From SR 1829 (Strickland Rd.) to Raleigh Planning Cordon. The section from SR 1829 to SR 2016 (Hawkins Rd.) will require 4 lanes.
15. SR 1007 (Poole Rd.) - From wendell Planning Cordon at SR 1003 (Eagle Rock Rd.) to Raleigh Planning Cordon at SR 2536. The section from Hodge Rd. to US 64 will require four lanes. A new two lane section is proposed from SR 1003 to SR 2049 (Forestville Rd.).

THOROUGHFARE PLAN
MAY 27. 1981

LEGEND

PRINCIPAL ARIERIALS interstate OTHER	Existing	PROPOSED
	armom	
		cas mallag
MINOR ARTERIALS		
MAJOR COLLECTORS		
MIMOR COLLECTORS		
URBAN MAJOR ThOROUGHFARE		
URBAM FREEWAY OR EXPRESSHAY	-amenaerami.	aramener
URBAA IHOROUGHFARE PLANHING AREA BOUNOARY		-.

AOOPTED BY WAKE COUNTY COMMISSIONERS ON
recommenoed approval by planning ano research BRANCH ON.
AOOPTEO BY N. C. BOARO OF TRANSPORTATION ON

WAKE COUNTY

NORTH CAROLINA

The rural collector routes will serve primarily intracounty travel. The major collector roads will supplement the principal arterial and minor arterial systems by providing an interconnecting network between smaller population centers and connecting the smaller population centers to the arterial routes. The minor collector roads will collect traffic from the local roads and carry it to the higher system roads. Proposed major and minor collector roads of wake County are as follows:

Major Collector Roads

1. US 64 Business - From US 64 to Wendell Planning Area and from Wendell Planning Cordon at Little Creek to Zebulon Planning Cordon at SR 2348 (Oil Mill Rd.). The latter section will need four lanes.
2. US 254A - From Zebulon Planning Cordon to Johnston County.
3. US 401 - From Raleigh Planning Cordon to Franklin County, and from Fuquay Planning Cordon to Harnett County. Four lanes will be required from SR 2042 (Fox Rd.) to Franklin County Line.
4. NC 39 - From Franklin County to Johnston County.
5. NC 42 - From Johnston County to Harnett County minus Fuquay Planning Area.
6. NC 50 - The section from Strickland Rd. (SR 1829) to NC 98 will need to be $4-1$ aned.
7. NC 54 - From Durham County to Raleigh Planning Cordon at SR 1762 (Wilson Rd.). The section from the north Morrisville city limits to wilson Rd. will need four lanes.
8. NC 55 - Erom Durham County to Harnett County minus the Apex and Fuquay planning areas. The entire route will be over capacity and need four lanes.
9. NC 96 - From Franklin County to SR 2337 (Jonn Borrow Rd.) and from Zebulon Planning Cordon at Johnston County.
10. NC 97 - From US 64 Bus. to Frankin County minus Zebulon Planning Area.
11. NC 98 - Four lanes will be needed from SR 1917 (Harrison Rd.) to the proposed NC 98 bypass in Wake Forest.
12. SR 1003 (Eagle Rock Rd.) From US 401 to Johnston County.
13. SR 1004 (Old US 70) - From Raleigh Planning Cordon at SR 2560 (Auburn Rd.) to Johnston County.
14. SR 1005 (Six Forks Rd.) - From SR 1829 (Strickland Rd.) to Raleigh Planning Cordon. The section from SR 1829 to SR 2016 (Hawkins Rd.) will require 4 lanes.
15. SR 1007 (Poole Rd.) - From Wendell Planning Cordon at SR 1003 (Eagle Rock Rd.) to Raleigh Planning Cordon at SR 2636. The section from Hodge Rd. to US 64 will require four lanes. A new two lane section is proposed from SR 1003 to SR 2049 (Forestville Rd.).

16. SR 1010 (Old NC 42) - From Apex Planning Cordon at SR 1379 (Penny Rd.) to Johnston County.
17. SR 1371 (Lake Wheeler Rd.) - From Raleigh Planning Cordon at $\operatorname{SR} 1379$ (Penny Rd.) to SR 1375 (Simpkins Rd.). This section will require four lanes.
18. SR 1375 (Simpkins Rd.) - From US 401 to SR 1010 (Old NC 42). Four lanes will be required here.
19. SR 1652 (N. Harrison Rd.) - From Raleigh Planning Cordon to William B. Umstead State Park entrance. Four lanes will be needed.
20. SR 1829 (Strickland RC.) - From SR 2000 (Ealls of the Neuse Rd.) to NC 50. This section will require five lanes.
21. SR 1923 (Thomson Mill Rd.) - Relocate on 4-lane section to connect SR $2000 \& N C 98$.
22. SR 1945 (Mitchell Rd.) - From NC 98 to US 401.
23. SR 2000 (Falls of the Neuse Rd.) - Erom SR 1829 to Raleigh Planning Cordon. The section from SR 1329 to SR 2016 will need 4 lanes.
24. SR 2406 - From Zebulon Planning Cordon to Erankiin County.
25. Proposed connector from proposed outer loop to proposed US 401 bypass around Fuquay. This connector and the outer locp will serve as a NC 55 relocation.
26. Proposed Southern Parkway. From Durham County at South Square to US 70.
27. Proposed industrial access near wake Eorest. A two lane road is proposed on 4-lane right-of-way between SR 2000 and US 1.

Minor Collectors

1. SR 1001 (Wakefield Rd.) - From Zebulon Planning Cordon to Eranklin County.
2. SR 1002 (Airport Rd.) - From SR 3015 to proposed Outer Loop.
3. SR 1005 (Six Forks Rd.) - From SR 1829 to NC 98. This section will require four lanes.
4. SR 1006 (Old Stage Rd.) - Erom Raleigh Planning Cordon at SR 2711 (Bud Buffaloe Rd.) to Johnston County. The section SR 2711 to SR 1010 (Old NC 42) will require four lanes.
5. $S R 1011$ (Old US I) - Apex Planning Cordon to Chatham County.
6. SR 1100 (Wagstaff Rd.) - From Fuquay-Varina Pianning Cordon at railroad tracks to SR 1101 (wilburn Rd.).
7. SR 1101 (Wilburn Rd.) - From SR 1100 to SR 1115 (Hollemans Crossroad Rd.).
8. SR 1110 (Maynard) - Erom Fuquay-Varina Planning Cordon at railroad tracks to wilbon.
9. SR 1115 (Hollemans Crossroad Rd.) - From Holly Springs to Hollemans Crossroads.
10. SR 1127 (Welfare Rd.) - From Hollemans Crossroads to New Hill.
11. SR 1141 (New Hill Rd.) - From New Hill to Chatham County.
12. SR 1152 (Holly Springs Rd.) - From Raleigh Planning Cordon at Swift Creek to SR 1153 (Old Holly Springs) at Apex.
13. SR 1153 (Old Holly Springs) - From SR 1152 to Apex Planning Cordon. This is a dirt road that will need to be paved.
14. SR 1160 (Hunter St.) - Erom Apex Planning Cordon at Beaver Creek to Chatham County.
15. SR 1300 (Kildare Farm Rd.) - Erom Cary Planning Cordon at Swift Creek to SR 1379 (Penny Rd.).
16. SR 1301 (Sunset Lake) - From Harnett County to EuquayVarina Planning Cordon.
17. SR 1301 (Sunset Lake) - From SR 1393 to SR 1152.
18. SR 1375 (Lake wheeler Rd.) - From SR 1010 to SR 1393 (Bass Lake Rd.).
19. SR 1379 (Penny Rd.) - From SR 1382 to S 1010. Five lanes will be needed from SR 1382 to Lake.
20. SR 1381 (Yates Mill Rd.) - From SR 1379 (Penny Rd.) to Raleigh Planning Cordon at SR 1382 (Wiison Rd.).
21. SR 1382 (Wilson Rd.) - Erom SR 1380 (AvOn Atkins Rd.) to SR 1379 (Penny Rd.). Five lanes will be needed.
22. SR 1393 (Bass Lake Rd.) - From US 401 to SR 1152 (EOlly springs Ra.).
23. SR 1511 (Old Jenks Rd.) - From Apex Planning Cordon $=0$ NC 55.
24. SR 1613 (Stone Rd.) - From Apex Planning Cordon to SR. 3014.
25. SR 1615 (Greenlevel Rd.) - Erom NC 55 to Raleigh Planning cordon.
26. SR 1642 (Nelson to Raleigh-Durham Airport) - From Durham County to proposed Outer Loop at SR 1644 via a proposed connector.
27. SR 1822 (Leesville Rd.) - From SR 1837 (Baker Rd.) to Raleigh Planning Cordon at SR 3211.
28. SR 1829 (Strickland Rd.) - From SR 1839 to NC 50.
29. SR 1834 From SR 1829 (Strickland Rd.) to NC 50.
30. SR 1837 (Baker Rd.) - From US 70 to Leesville. Eour lanes will be needed.
31. SR 1839 (Bliss Rd.) - Erom Durham County to SR 1829 (Strickland Rd.).
32. SR 1907 (Newlite Rd.) - From NC 98 to Granville County.
33. SR 1909 (Mason Pond Rd.) - From SR 1917 to Wake Forest Planning Cordon.
34. SR 1917 (Harriscn Rd.) - From NC 98 to SR 1909 (Mason Pond Rd.).
35. SR 1942 (Juniper St.) - From Wake Forest Planning Corion at SR 1943 (Brame Rd.) to Franklin County.
36. SR 2000 (Falls of the Neuse Rd.) - From SR 1829 (Strickland Rd.) to NC 98. This section will require four lanes.
37. SR 2006 (Mt. Vernon Church Rd.) - Erom SR 1005 (Six Forks Rd.) to US 401.
38. SR 2012 (Litchford Rd.) - Erom SR 2000 to Raleigh Planning Cordon at SR 2013 (T. Quarry Rd.).
39. SR 2045 (Burlington Mills Rd.) - From US 1 to SR 2049 (Forestville Rd.).
40. SR 2049 (Forestville Rd.) - From Wake Forest Planning Cordon at Austin Creek to US 401 and US 64 to SR 1007.
41. SR 2051 (Burlington Mills Rd.) - From SR 2049 to US 401.
42. SR 2215 (Buffalce Rd.) - From Raleigh Planning Cordon to SR 2234. The section from the Raleigh Planning Cordon at the Neuse River to SR 2217 will require four lanes.
43. SR 2217 (Allen Store Rd.) - Erom US 64 to SR 1003 (Eagle Rock Rd.).
44. SR 2224 (Mitchell Mill Rd.) - From US 401 to NC 96.
45. SR 2233 (Wade Earris Rd.) - Erom US 54 to SR 1007 (Poole Rd.).
46. SR 2234 (Cozart Rd.) - Erom SR 2215 (BuFfaioe Rd.) to SR 1003 (Eagle Rock Rd.).
47. SR 2308 (Eowler) - Erom SR 2329 to NC 96.
48. SR 2320 (Avon Privette Rd.) - From SR 1003 to NC 97 minus Zebulon Planning Area.
49. SR 2329 (Lizzard Lick Rd.) - From Wendell Planning Cordon to SR 2308 (EOwler).
50. SR 2345 (Loop Rd.) - From Zebulon Planning Cordon to Johnston County.
51. SR 2349 (Morphus Bridge Rd.) - From SR 2352 (Corbin Rd.) to Zebulon Planning Area.
52. SR 2352 (Corbin Rd.) - From SR 2349 to SR 2353 (Morphus Bridge Rd.).
53. SR 2353 (Morphus Bridge Rd.) - From Wendell Planning Area to SR 2352.
54. SR 2358 (Lake Glad Rd.) - From Wendell Planning Cordon at SR 2361 (Old Nowell Rd.) to SR 1003.
55. SR 2516 (Hodge Rd.) - Erom US 64 to Poole Rd. This section will require four lanes.
56. SR 2542 (Rock Quarry Rd.) - From Raleigh Planning Cordon to SR 2556.
57. SR 2547 (Log Cabin Rd.) - Erom Raleigh Planning Cordon at SR 2876 to SR 2700.
58. SR 2556 Erom SR 2542 to SR 1004.
59. SR 2700 (Mt. Eerman Church Rd.) - Erom SR 2547 (Log Cabin Rd.) to Johnston County.
60. SR 2751 (Hilltop Rd.) - From US 401 to NC 42.
61. SR 2754 (Rawl Rd.) - Erom NC 42 to SR 2765 (Paul Boneycutt Rd.).
62. SR 2765 (Paul Honeycutt Rd.) - From SR 2754 to EuquayVarina Planning Cordon.
63. SR 2767 (Sutton Rd.) - From NC 55 to Fuquay-Varina Planning Cordon.
64. SR 2770 (Trash Pile Rd.) - From Farnett County to FuquayVarina Planning Cordon.
65. SR 3014 From NC 55 to NC 54.
66. SR 3015 From Morrisville at NC 54 to SR 1002 (Airport Rd.).
67. Proposed Dixie Trail Extension - From Eillsborough St. to SR 1382. It will be five lanes.

Scheduled Improvements To
Thoroughfare System
The North Carolina Transportation Improvement Program has been developed and approved by the Board of Transportation, to keep the citizens of North Carolina abreast of current developments in the State's Highway system, to emphasize the ongoing nature of hignway planning, and to invite local input into the planning process.

The Program is reviewed and updated by the Board of Transportation on an annual basis, and a seven-year project planning schedule has been established. This sixth annual update in 1979, like the original program, provides an ambitious project schedule. Projects approved by the Eoard of Transportation and included in the Program represent the highest priority street and highway needs from all across the State as they are currently understood. There are many other greatly needed projects which could not be included and reasonably balance the Program with expected revenues.

The foilowing is a list of projects that are scheculed in the Transportation Improvement Program (TIP) for wake County:

1. I-40 - Sunnybrook Rd. to S. Saunders St., six lane freeway on new location. (Eiscal year 1981, TIP number I-7)
2. I-40 - NC 54 South to S. Saunders St., four and six lane freeway on new location. (Eiscal year 1980, TI? number I-8)
3. I-40 - Raleigh Beltine to I-95, four lane freeway on new location. (Fiscal year 1980, TIP numer I-10)
4. US 1 - US 401 to Wake Eorest bypass, widen existing roadway to four lanes. (Under construction, TIP number R-34)
5. US 1 - Richland Creek to Youngsville, widen existing roadway to four lanes. (Eiscal year 1982, TIP number R-205)
6. Apex - SR 1153 (Old Eolly Springs), SR 1011 (Old US 1) to town limits, widen to 24 ft . (Under construction, TIP number U-555I)
7. Apex - SR 1307 (Chatham St.) SR 1160 (Hunter St.) to Jones St., widen and resurface. (Fiscal year 1980, IIP number $\mathrm{U}-655 \mathrm{~A}$)
8. Apex - SR 1011 (Salem St.), NC 55 to north Apex city limits, resurface. (Fiscal year 1980, TIP number U-755A)
9. Cary - Earrison Ave., Chatham St. to NC 54, widen existing roadway to multilane facility. (Fiscal year 1982, TIP number U-216)
10. Cary - New Connector Western Blvd., I-40 to SR 1415 (Maynard Rd.), multilane facility on existing roadway. (Fiscal year 1980, TIP number U-505)
11. Cary - Walnut St., US 1 to Maynard Rd., widen existing roadway to multilane facility. (Fiscal year 1985, TIP number U-605)
12. Cary - $S R 1101$ (Wilburn Rd.) and $S R 1616$ (High Eouse Rd.), realign intersection. (Fiscal year 1980, TIP number U-755B)
13. Fuquay-Varina - SR 1179 (Bridge St.) south of SR 1110 (Maynard) to washington St., resurface. (Fiscal year 1980, TIP number U-655E)
14. Euquay-Varina - SR 2767 (Sutton Rd.), SR 2770 (Trash Pile Rd.) east to Fuquay-Varina city limits, resurface. (Eiscal year 1980, IIP number U-755E)
15. Euquay-Varina - US 401 and NC 42, change turning radius. (Eiscal year 1980, TIP number U-755F)
16. Gamer - Timber Dr., NC ミ0 to US 70, multilane facility on new location. (Eiscal year 1985, TIP number U-604)
17. Garner - SR 2562 (New Rand Rd.), Main St. to south city limits, widen and resurEace. (Fiscal year 1980, TIP number U-655F)
18. Kaightiale - SR 2233 (Wade Earris Rd.), SR 2049 (Forestville Rd.) south to Knightciale city limits, resurface. (Eiscal year 1980, TIP number U-755E)
19. Raleigh - Beltiline, US 64 to Sunnybrook Rcad, four-iane freeway on new location. (Eiscal year 1981, TIP number U-63)
20. Raleigh - Dawson-McDowell Streets Ext. to US 401, extend existing roadway. (Fiscal year 1980, TIP number U-83)
21. Raleigh - Galifax St. Nade Ave. Ext., multilane roadway on new location. (?ost year, TIP number U-2i0)
22. Raleigh - Lake Boone Trail, Beltine to SR 1664 (Blue Ridge Rd.) and Blue Ridge Rd., wade Ave. to Duraleigh Rd., widen to multilane facility. (Eiscal year 1980, TIP number U-514)
23. Raleigh - Gammond Rd., Rush St. Eo US 70, multi-lane Eoadway on new facility. (Eiscal year 1982, TIP number U-515)
24. Raleigh - Person-Blount St. Ext., connector to Rush St.
(Under construction, TIP number $\mathrm{I}-7 \mathrm{C}$)
25. Raleigh - Falls of Neuse Rd., Quail Ridge Rd. to north city limits, widen to multilane facility. (Eiscal year 1980, TIP number U-603)

	- SR 1319 (Frankilin Rd.), US 1 to Waters Edge Drive, curb and gutter section on east side. (Fiscal year 1980, TIP number U-655 I)
	Raleigh - SR 1005 (Six Forks Rd.) 0.06 miles north of
	SR 1819 to city limits, widen and resurface. (Fiscal year 1980, TIP number U-755K)
28	Wake Forest - Elm Ave. and Franklin St., Brooks Ave. to NC 98, extension. (Fiscal year 1980, TIP
29	number U-755) Wake Eorest - US I-A, modify catch basins within Wake Forest. (Eiscal year 1980, TIP number
	Wendell - US 64 Bus., curb and gutter to east town limits (Under construction, TIP number U-555N)
	Wendell - SR 2355 (Third St.), SR 1007 (Poole Rd.) to NC ${ }_{U-655 \mathrm{~K}}^{231}$) rurface. (Fiscal year 1980, TIP number U-655K)
32	Wendell - SR 1007 (Poole Rd.), SR 2355 (Third St.) south to city limits, widen. (Fiscal year 1980, TTP number U-755M)
33	Wendell - NC 231, SR 2355 south to city limits, widen. (Fiscal year 1980, TIP number U-755N)
34.	Zebulon - NC 97, SR 2406 to eastern City limits, widen and resurface. (Eiscal year 1980, TIP number U-655L)
35	Zebulon - SR 2348 (Oil Mill Rd.), SR 2349 (Morphus Bridge Rd.) east to NC 96, resurface. (Fiscal year 1980, TIP number U-7550)
36	Raleigh - Peace St., Glenwood Ave. to St. Marys St. and from Ealifax St. to Person St., widen to multilane facility. (TIP number C 603)
	leigh - Woodburn Ave. - Clark Ave. intersection, pro vide turn lanes on both streets and upgrade signal. (TIP number C 622)

VI．DESIGN REQUIREMENTS

Design requirements for thoroughEares vary according to the desired capacity and level of services to be provided． Universal stancards in the design of thoroughiares are not practical．Each road section must be individually analyzed and its design zequirements detenmined on the basis of amount and troe of projected trafinc，existing capacitr，desired level of service，and available right－of－way．

The level of sefrice is a function of the ease of move－ ment experienced by motorists using the Eacility．The ability OE a motorist to drive at a desired sceed is dependent upon the physical design of the road；the amount and charac＝er of Erasinc control devices；the infiluence and charačer of raze－ Eic generated by abutting procertr；and inposed speed restric－ tions．The level of service is generaliy indicated by the over－all travel speed experienced by tra三fic．Recommended mininum levels of serrice for roads and hignays included in the proposed wake County Thorougkzare ？ian are given in Table $\underset{\sim}{1}$ ．

Tabie 4．Minimum Leveis oE Seroice Eor Rcads and Eignways in waxe Councy

EaciliEY	Overall Travel speed During ？eak TrafEic condutions
Major and	
Minor Arterials	50－5 MrE
Major Coliector Roads	45－50 WPE
Minor Collector Roads	40 MPE

From the standpoint of driver convenience，ease of op－ eration，and safety，it would be desirable to widen all exist－ ing roads and highways to grovide a minimum lane vidth of 12 Eeet．Eowever，when considering overall statewide aeeds and avaiiable highway revenues，it is found that these levels of improvement applied statewide vould be impzactical．It is necessary，therefore，to establish minimum toierable widts EOI existing roads with respect to EzaĖic demards which would be economicaily feasiole．Table 5 gives the ridths used in deremining the existing lane deficuencies in tiee councy．

[^2]Table 5. Minimum Tolerable Lane widths (in feet)

ADT	Principal Arterials	Minor Arterials	Collectors
Over 2,000	11	11	11
$400-2,000$	-	10	10
$100-400$	-	10	9
Below 100	-	-	9

Using historic traffic volume trends, information obtained in the capacity deficiency analysis, and tolerable lane width standards, rural road and highway improvements needed in Wake County were defined and are listed in Appendix A. Recommended pavement cross sections for roads to be widened were either 20 feet, 22 feet or 24 feet, depending upon the anticipated trafEic and Eunction of the Eacility. Typical cross sections recommended by the Thoroughfare Planning Unit are shown in Eigure 6 .

TYPICAL THOROUGHFARE CROSS SECTIONS

A.

228

B.
200^{\prime}

C.
110^{\prime}

D.

TYPICAL THOROUGHFARE CROSS SECTIONS
 (CONTINUED)

G.

H.

J.

I.

K.

L.
100^{\prime}

Cross section "A" is typical for controlled access freeways. The 46 foot grassed median is the minimum desirable median width, but there could be some variation from this depending upon design considerations. Slopes of $8: 1$ into 3 foot drainage ditches are desirable for traffic safety. Right-of́way requirements would typically vary upward from 228 feet depending upon cut and fill requirements.

Cross section "B" is typical for four lane divided highways in rural areas which may have only partial or no control of access. The minimum median width for this cross section is 30 feet, but a wider median is desirable. Design requirements for slopes and drainage would be sinilar to cross section "A", but there may be some variation from this depending upon right-of-way constraints.

Cross section "C", seven lane urban, and cross section "D", five lane urban, are typical for major thoroughfares in urban areas where frequent left turns are anticipated as a result of abutting development or frequent street intersections.

Cross sections "E" and "E" are also used on major thoroughfares where left turns and intersecting streets are not as frequent. Left turns would be restricted to a few selected intersections.

Cross section "G" is recommended for urban boulevards or parixays to enhance the urban environment and to improve the compatioility of major thoroughfares with residential areas. A minimum median width of 24 feet is recommended with 30 feet being desirable.

Typical cross section "卫" is recommended for major thoroughfares where projected travel indicates a need for four travel lanes, but is not excessively high; left turning novements are light; and right-of-way is restricted. An additional left turn lane would probably be required at major intersections.

Thoroughfares which are proposed to function as one-way traffic carriers would tipically use cross section "I". Cross section "J" and "K" are usually recommended for minor thoroughfares since these facilities usually serve both land serfice and traficic service functions. Cross section "J" would be used on those minor thoroughfares where parking on both sides is needed as a result of more intense development.

Cross section "L" is used in rural areas or for staged construction of a wider multilane cross section. On some thoroughfares projected traffic volumes may indicate that two travel lanes will adequately serve travel for a considerable period of time.

The curb and gutter urban cross sections all illustrate the sidewalk adjacent to the curb with a buffer or utility strip between the sidewalk and the minimum right-of-way line.

This permits adequate setback for utility poles. If it is desired to move the sidewalk further away from the street to provide additional separation for pedestrians or for aesthetic reasons, additional right-of-way must be provided to insure adequate setback for utility poles.

Right-of-ways shown for the typical cross sections are the minimum rights-of-way required to contain the street, sidewalks, utilities, and drainage facilities. Cut and fill requirements may require either additional right-of-way or construction easements. Obtaining construction easements is becoming the more common practice for urban thoroughfare construction.

If there is sufficient bicycle travel along the thoroughfare to justify a bicycle lane or bikeway, additional right-of-way may be required to contain the bicycle facilities. The North Carolina Bicycle Facility and Program Eandbook should be consulted for design standards for bicycle Eacilities.

Recommended design standards $=e l a t i n g ~ t o ~ m a x i m u m ~ a n d ~ m i n-~$ imum grades, minimum sight distances, maximum degree of curve and related superelevation, and other considerations for thoroughfares are given in Apoendix B. This Appendix gives definitions and design standards recommended for inclusion in subdivision regulations.

The North Carolina Bicvcle Facility and Program Handbook. Barton-Aschman Associates, Inc., April, 1975.

VII. CONSTRUCIION PRIORITIES AND COST ESTIMATES

Recommended priorities for construction or implementation of proposals and their estimated costs (in 1980 doilars) are listed in table 6 . It should be noted that Table 6 is only an estimate and it is Elexible. The county and the Department of Transportation should revise the priorities as time progresses to best suit the demands placed on the road system.

Cost estimates for widening of roads to bring them up to AASETO design standards (Table 5) are also given in Table 6. ?riorities for these improvements should be continually monitored by the county and the Division Engineer so that as addiEional Eunds become available (Chapter VII) they can be implemented.
 cost estrimates
$(\$ 1,000)$
HOW

TABALE 6 (contimued)

TABLEE 6 (Contintied)
CONSTRHCIION PRIORITIES AND COST ESTIMATES

TABIEE 6 (conlinucd)

$$
\text { TABIE: } 6 \text { (continued) }
$$

CONSTKUCTION PHIOHITIES AND COST ESTIMATES

TABIE 6 (continued)

Table 6 (continued)

VIII. IMPLEMENTATION

There are several tools which are available for use by a county to assist in the implementation of a Thoroughfare plan. They are as follows:

State-County Adoption of Thoroughfare Plan

If requested, the Department of Transportation in cooperation with a county will cooperatively develop and mutually approve a county Thoroughfare plan. The mutually approved plan would serve as a guide to the Department of Transportation in the development of the road and hignway system of the county. The approval of the plan by the county would enable subdivision regulations and zoning ordinances to be effectively used to assist in the implementation of the plan.

Subdivision Controls

The subdivision regulations require every subdivider to submit to the county planning commission a plan of his proposed subdivision and requires that the subdivision be constructed to certain standards. Through this process, it is possible to require the subdivision streets to conform to the Thorougnfare plan and to reserve or protect necessary zights-of-way for projected roads and highways that are to become a part of the Thoroughfare plan. The construction of subdivision streets to adequate standards would reduce maintenance costs and would facilitate the transfer of the streets to the State Eighway System. Appendix B outlines the Department of Transportation's Recommenced Design standaris.

zoning

The zoning ordinance is an important tool in that it will regulate future land development and minimize undesirable development along roads and highways. The zoning ordinance can improve highway safety by requiring sufficient building setbacks to provide for adequate signt distances and by requiring off-street parking.

Funding

As stated in Chapter V, most all highway improvements are scheduled and funded by the Transportation Improvement Program. The Board of Transportation regularly conducts public meetings to obtain input from the public as to their needs for highway improvements.

However, not all roadway improvements are covered by this procedure. Neariy all secondary road work is done on a county
by county basis with funds from both the legislature and road bonds. These Eunds (county construction account) are used to pave unimproved roads, widen roadways, stabilize dirt roads, make minor alignment improvements, and even construct short connectors when appropriate. The county commissioners are encouraged to work with the Division Engineer when the county's priority list is developed. Many of the minor improvements recommended may be realized by using the county's construction account funds and cooperatively developing the county's priority list with the Division Engineer.

APPENDIX

APPENDIX A - TECROUGEFARE PTAN STREET TABUTLATION AND RECOMMENDATIONS
 APPENDIX 3 - RECCMMENDED DEETNITIONS AND DESIGN STANDARDS FOR SUBDIVISION ORDINANCES

APPENOIX A
THOKCUGHFANE PLAN STFEET PABULATICN AVC FECEMUENOATICAS

APPENOIX A ICENTINUED：
 THCROUGHFARE PLAN STREET TABULATICN AND RECGMMENDATIGNS

－FICILITY ：SECTICN								
ABE：								
NC 39								
PLJS ： 52 － 1.	ग． 52	60	100	30000	job	2000	100	－00
if F2dAKL：Y EJUNTY	2.10	20	50	5000	300	：000	100	\＄00
$\triangle C \rightarrow 2$								
HARIETT ECWNTY TS SR： 33	1.30	20	50	0000	1000	24.90	22	100
YCSS TO JOLNSICN JOUNTY	7． 0	23	100	5000	： 200	2900	22	100
NC 50								
SR 2SE2 TS JCHYSTCN EIUNTY	5． 3	20	100	5000	6100	5000	L	100
SR，329 PC＋C？3	勺．3	20	$\bigcirc 0$	－000	2200	5000	3	200
YC7．つUS L．02 M1．	1． 52	29	60	¢000	2400	＋300	22	109
	b． 04	24	230	\＄000	2400	4300	109	100
TO JRINVILLE COUNTY	3.53	20	60	－ 200	24.00	3700	22	100
＊ 3 is								
SURHAM SOUNTY TC TCRTH E：TY								
L：＊ITS EE CRR【SV！L	2.50	：3	－00	5000	3600	4.000	6	400
CITY UIUTTS ID SR：7S2	3.30	：3	：00	5000	4900	5100	0	100
MC 55								
－ARVETT ここUNTV TJ こaごちゃ	2.50	24	50	5000	71.00	12000	3	200
	2.30	29	50	5000	5000	1.1000	3	200
52：395 ic 2aIL2C30 Eス0SSIYG	－ 3.30	29	60	6000	7700	：2000	3	30
2AILRCAO EROS［NG TC Sa！	3.86	20	100	5000	9000	： 5000	3	200
SR1＊44 TO 」S	0.14	24	100	\＄000	7.000	：5000	0	100
JSOA TO SURMA A COUNTY	9.50	22	150	5000	－500	3000	3	200
NC 76								
JOHNSTON CSUNTY TO SR 2347	1.5	13	60	－000	1900	1000	20	100
SR2337 TO FRANRL：N COLNTY	12.0	20	100	2000	1000	2200	22	100
WC 77								
US264 TO FRANXLIN SIUMTY	2.0	20	60	5000	2000	－	22	100
USOーJUS．TE LESULON PLANNIVG CJROCM		22	180	\＄000	4600	3000	100	100
$\triangle C$ 9								
OURHAR EEUNTY TO SR1917	50.3	24	60	6000	2700	3600	100	100
SR：917 TC VC38 jYPaSS	3.75	24	60	0000	3600	1：000	3	200
MCgs 3Y？．í Faink：IY county	4.3	20	60	5000	2200	3000	22	ADC
SR ：0011MAKEF［ELJ 20．）								
GOUNTY	6.00	： 3	60	5000	：$: 00$	2000	22	100
SR ：OO21」IRPORT RJ．）								
SR3015 T0 LこOP	0.70	24	50	5000	4470	－	100	100

1POEMD！X 」（CENT！NLEコ）

THCRGUGHFARE J\＆AN JTREET TASULATIC：ANO FEGEWMENDATIENS

＊FICILITY ：SESTICV								
	1．1：	23	So	5000	2 ± 00	3400	22	120
2－J T．ES 4t．	7.25	13	00	2000	：200	？ 5.90	？？	102
	3．j	こ6	$=0$	－000	：000	：090	$\triangle 0 ¢$	10%
TG：CHyJTCY COUNTY	3.3	± 3	so	5000	900	－	20	100
32：304（こLこ 」STO）								
SRLSE． $\mathrm{I}=\mathrm{JCHNSTCN} \mathrm{COU4TY}$	4.30	30	60	0000	E900	4500	22	100
SR ：JUS（S：X FE2KS 20）								
S＾2）15 FO SR1329	1.53	$=0$	\＄0	5000	－	12300	3	30
52：329 TC 3AYL三AF	3.50	20	so	51900	3900	1.000	3	30
3دYL三』F TC NC9J	3.0	： 8	60	0000	－	6000	3	100
SR100¢12LJ STIGE 20．1								
Jこムう！「こ SR10：	－． 50	13	60	5900	3：00	－500	；	100
SR：J：3 IC JCHNSTCH ESUNTY	9.00	13	E0	S000	1200	2000	23	100
SR－007100こLE 20）								
JR：Ju？「ら ARXS E2EEK	2.53	20	Ev	5000	900	2000	L	100
MARKS GこEEく ご	5.10	：3	50	5000	：400	2900	\square	$: 00$
	1.50	： 3	00	SUOO	3000	5000	0	30
SR！007（ven atignmext）								
SR：303 TJ 5R2．347	3.20	－	－	－	－	－	L	100
SR ：O：O（ELJ VC42）								
S21579 IL NCミ0	13.0	20	00	－200	2800	5200	6	： 00
YCうO TC JCHNSTCN COLNTY	1．0	20	60	¢000	1050	1600	106	400
SR ：J1：（CLJ US：）								
EEST CITY LIMITS APEX TC GHATHAM CJUNTY	7.70	22	60	0000	：750	3500	906	106
SR 1： 30 （InAGSTAFF RO．）								
SRILJL TO FAlLRCAD TRACKS	0.40	20	60	5000	500	－	100	400
SRD：E 5 IO VC＋2	5.00	：3	－0	2000	1500	2500	22	100
VC42 TC SR1100	1.00	20	60	5000	：300	－	106	10 C
SR ：：1：J（\＃AYNARO）								
SR1：01 TO TC55	2.00	13	00	6000	300	1900	20	102
SR ：：：Simoll Eyans grcssicao २०．）								
SR：Dこ7 TG－CLLy 3PQ：NGS	5．0．	13	00	6000	000	1500	20	$A C C$
	5.00	： 3	20	5000	2600	－000	L	．00

```
    APOENOIX & (GCNTINUEこ)
THCFCUGIFIRE LLAN STREET TJBULATICV A,YO =EGEMMENDATIENS
```

＊FICIL！TY ：SECIICN			ICN 2 CN FT	CITY EWT UREI	979 075	$\begin{aligned} & 2000 \\ & 1.275 \end{aligned}$	三CCM	DEJ IDA スCま 1」LT
	2.23	： 3	≤ 0	－000	700	$\therefore 300$	23	130
5R ：－ごう j2b1oj	2.70	24	200	0000	700	1300	こご	100
5ミ：：05－こ，5コ4	1.50	！3	$\leqslant 0$	≤ 000	700	： 300	？ 2	100
SR ：： 2 ！－CLLY 500：YGS 20．）								
	2．53	：3	－0	5000	$: 300$	3000	6	：00
LCCP iこ－CLLY ミPa！yGs	4.50	： 3	$\leqslant 0$	¢cco	$\therefore 300$	3.000	22	100
	：．50	1.3	$=0$	5000	100	－	22	100
SR： $5: 2 T: j S:$	3.50	34	50	3000	200	－	22	100
5R ：SJイTUNTER ET．d								
	5	$: 3$	50	5000	－ 00	530	23	100
	1．00	20	$=0$	5000	1900	3000	22	100
52 Lこの：（SuNEET L AXE）								
	3.23	： 3	60	5000	500	：$=00$	20	106
HCLLANO TE GAZVETT GこUNTY	2.30	：3	60	5000	$\rightarrow 00$	－	20	100
	1．4．4	13	50	0000	：30 J	13000	3	200
US＋J：T丁 SR127：	1.14	24	6 C	0000	4500	9000	3	200
SR1271 OLUS ．． $76 * 1$.	1.98	13	50	5000	3700	3600	3	200
TC 5R：2：2	J． 4.1	20	to	6000	2400	5100	$\underline{2}$	200
SR：J10 Tこ 3R1シ93	3.42	20	so	5000	1000	：500	109	100
SR 1379 （2EVNY 2CAD）								
SR1292 T：LAKE WEELER	1.30	：3	60	0000	700	6000	\bigcirc	30
LAKE T门 SR10：0	5.50	13	60	5000	200	－	20	400
SR ：321fMTES MILL 20．1								
SR：379 TT SR：382	2.30	13	60	6000	1000	4000	22	106
SR 1382（11LSUN 20．）								
SR1230 TO 5R： 279	0.50	20	60	5000	1400	3000	5	30
SR 13C313ASS LAKE＝－）								
リS 01 T0 jR1：52	7.00	13	60	3000	900	1300	≥ 0	100
SR 1bi：1CLJ de：rks 20．1								
	2.00	13	00	2000	900	－	20	100

```
    APOENOIX A (CENTINUES)
THGROUGHFARE PLAN STREET TABULATICN A.NO RECCMMENDATICNS
```



```
    มロO\subseteqソ:!X & (ここんT:MリヒZ!
IGGROUGHFAOE دLIN STEEET TAEULATICN ANL =ECEWMENCATICNS
```

＊								
＊								
	： 23	： 3	5）	つらい	こつこコ	？ミ．）？	22	100
こRでJミこ Tコ，」－Ji	i．9	23	＊	souv	2000	3500	22	100
コロここの 「こ，小これ	3．j	20	5.7	：003	こうら0	20：00	；	：30
5x：3この 「こ こ2．6	2－0	？ 4	$=0$	－000	3000	$\therefore 2100$	3	30
SR 2000 （I．VE＝Vriv Gruplit 29）								
S22）0：－－．5＋：	－1．${ }^{\text {¢ }}$	：3	$=0$	5000	$\therefore 500$	3500		
5a200u io ja： 205	3.4	20	$=0$	$=000$	$\square 50$	2500	22	AJO
SR こC：こしい：TC：HFこR 20．1								
SR20：3 Fこwaxo SRここ00 FСR								
L． 1 vi．	6． 73	：3	50	3000	$\therefore 200$	1 ± 00	22	100
	こ．う	：${ }^{\text {j }}$	$=0$	2000	$: 500$	－	20	10c
SR 2こ4C1ニこRミコTみ！								
FCRESTV！LLE io JS40！	4.50	：3	60	5000	700	$: 300$	20	100
JS66	3．0．3	24	60	5こ00	2700	5900	100	100
5R2E0¢ 3！us J．J3－．	J． 33	20	60	0000	2700	3700	$こ 2$	12\％
TC うここち！	2．13	33	60	$: 5000$	$? 700$	3700	」ご	100
「つ SE2ここる	3.13	？ 0	－0	$=0.00$	$\therefore 300$	2900	22	100
TOEF：ここ7	$\because .74$	： 3	00	5000	！ここ0	2700	22	100
SR ？ $25: 1$ EURL：USTCN＊iLbS 20）								
うR20ヶ9 「こ＇JS＊U！	2.00	： 3	00	2000	：000	1000	20	100
SR 22：SİUFFALOE 20．1								
VEUSE RIVEF TO SR22：7	2.00	24	20	6000	1600	5300	3	：00
SR2217 TE ミ2こ234	3.20	18	60	5000	300	1300	20	100
SR 22：71دLLEY STERERC．								
US6＊10 SR2O4．	2.3	20	60	5000	500	1000	100	$\triangle 00$
SR2049 TC 5R：J03	5.50	：3	60	5000	700	： 200	20	120
SR こここッ1＊ITCHELL ILL＊O．）								
JS40 L TC S2：003	4.50	： 3	60	2000	：500	4000	22	100
SR：OUS TO VCFo	5.00	：3	≤ 0	$=000$	500	－	29	106
SR 2こころ1＾ACE HRRIS 20.1								
SR2OES TI SR：007	3.30	19	$\therefore 0$	－000	2000	3000	22	100
jRても0う io jS ju	1．43	24	50	0000	2700	3700	1.06	100
SR 22341Cこ2ART＝0．1								
SR22：5 たこ こRさこけき	3030	： 3	60	かこうこ	2300	： 300	20	10\％

```
    APOEvOIX 2 (CこYT:MUEこ)
THCRGUGHFARE JLAN STREET PAOULATICN ANO AECEMMENDATICNS
```

FACIL：TY $\dot{\text { FECTICV }}$								
Siここご TCVEFe	0.50	$: 3$	80	：000	$=00$	\bullet	≥ 0	100
SA こミこ－1－VCM 20：YETTE 20．1								
これ：こここけVてつ	フ． 0	： 3	5.3	$=000$	1200		20	SUC
おプせ 「ごい？	：．3）	：3	≤ 0	：0C3	$:=00$	－	20	109
jSotuS	3．：	30	50	12000	－	－	100	100
2LJS ذ． 5 ¢－！	$3 \cdot 55$	！ 3	$=0$	0.00	：200	－	$=0$	100
10 5ここ303	2.70	20	so	5000	－10	－	100	100
SR ここヶミ1LCCコ＝）． 1								
	2.00	$: 9$	00	5000	$=00$	－	20	100
5R 23ッチ1ロこスコHUS ミQIこGE 20．1 SCUTA－TPy ！©aITS－								
SOUTH こ！＋Y ！：A1TS－F 	2.30	13	23	2000	300	－	20	100
	3．5．3	：3	00	5000	900	－	20	102
こマここう2 if jうó4 2US．	2	3	－3	6000	700	－	30	100
scuth こiry LiMITS EvOELL T0 52：．203	2.00	：3	00	5000	：$: 00$	－	20	100
SR $2+06$								
guUnty	2.5	20	： 00	0000	2：00	－	32	200
5R 2516（nGOGE 20．） USOG TD SR1007	3.50	18	60	0000	3100	5300	3	：00
SR 25421RCCK GUARRY 20．1 SR25Sら Tた 3R2547	4.00	20	50	5000	－000	5000	32	100
$\begin{aligned} & \text { SR 25471LこG GABIY 20.1 } \\ & \text { US70 TC } 522700 \end{aligned}$	1.50	$: 3$	60	0000	2300	4300	22	100
SR 2556120CK 叉UARRY RJ．1 SR1004 TO SR2542	：．0ง	20	≤ 0	2000	3200	5000	22	10\％
SR 2700（जT．HEZ』AN CHURGH ₹O） SR2547 iこ JCRNSTCN GUUNTY	2.53	13	50	0000	500	1000	22	10ヵ

```
APOENDIX \＆ICCNTINUED）
THROUGHFARE DLAN STREET FAZULATICN AND REECMMENOATICNS
```

－FacIlity i section	$\begin{aligned} & \quad \text { EXI } \\ & =0 I S T \\ & \text { MI } \end{aligned}$	TIV ECT CHY FT	CN	CITY EVT UREJ	979 CTS	2000 dors	ECS： UWA ULT	OED ICN 20w ULT
JS $\rightarrow 0$ ！「ワ VC +2	2.50	13	60	5000	$: 200$	\bullet	20	109
SR 27541RAWL 20．1								
VC－ 2 「こ j22755	1.30	13	00	0000	700	－	20	100
SR 27S5イコAUL mC：IEYCUTT RC．I YC Sミ TC jR2754	2． 30	20	60	0000	300	－	100	100
SR 2767 ISUTTCN 20．1								
$\begin{aligned} & \text { EAST GITY LIAITS FJGUAY TO } \\ & \text { HES5 } \end{aligned}$	2.00	13	60	0000	330	3000	20	100
5R こ77017RASH د［LE RC\＆）								
HARNETT COUVIY PLUS 0.2 I．	0.23	20	60	6000	－	－	100	100
TO SR27ヶ7	2.90	13	60	5000	2900	－	22	$\pm \infty$
SR 30：4								
NC5S T0 VC5～	3.33	18	60	6000	1500	1900	20	100
SR 30：5								
NC54 TC SR：JO2	3.50	22	50	5000	1300	3000	100	100
CIXIE TRALL EXTENS：CN								
GLCJE PDAO ECNNECTCR								
SR！042 TO JLC3E 20．aT CUTEN LCCP	0.50	－	－	－	－	3000	22	6
INOUSTRISL ACEESS ROAD PRCPCSEC aETIEEN SR2000 AND								
US 1	1.75	－	－	－	－	13800	6	150
GUTER LGCP								
USL AT GRESHAMES LAKE TC								
US70 AT SR 1002	12.0	－	－	－	－	－	3	200
US7J TO 1－40	4.0	－	－	－	－	－	J	30
PRCPCSEC -40 ID USL AT								
GRESITAMCS LARE	14.0	－	－	－	－	－	1	229
CUTER LCEP CONNECTCR								
TO US401 EYPASS	4.50	－	－	－	－	－	L	100
SOUTHERA OARK．AY								
OURHAM ECUNTY TO USTO	1.30	－	－	－	－	15000	；	100

```
                                    APPENDIX B
RECOMMENDED DEFINITIONS AND DESIGN STANDARDS
    FOR SUBDIVISION ORDINANCES
```

DEEINITIONS:
I. Streets and Roads:
A. Rural Roads

1. Principal Arterial - A rural link in a network OE Continuous routes serging corridor movements having trip length and travel density characteristics indicative of substantial statewide or interstate travel and existing solely to serre traficic. This network would consist of Interstate routes and other routes designated as principal arterials.
2. Minor Arterial - A rural link in a network jolning cities and larger towns and providing intrastate and intercounty service at relatively high overall travel speeds with minimum interference to through movement. This network would primarily serve traffic.
3. Major Collector - A road which serves major intracounty travel corridors and traffic generators and provides access to the Arterial system.
4. Minor Collector - A road which provides serVace $=0$ smail local communities and links the locally important traffic generators with their rural hinterland.
5. Local Road - A local road that serves primarily to provide access to adjacent land and for travel over relatively short distances.
6. Urban Streets
7. Major Thoroughfares - Major thoroughfares consist of interstate, other Ereeway, expressway, or parkway links, and major streets that provide for the expeditious movement of high volumes of traffic within and through urban areas.
8. Minor Thoroughfares - Minor thoroughfares are important streets in the city system and perform the function of collecting traffic from local access streets and carrying it to the Major Thoroughfare system. Minor thoroughfares may be used to supplement the Major Thoroughfare system by facilitating a minor throughtraffic movement and may also serve abutting property.
9. Local Street - A local street is any link not on a higher-order urban system and serves primarily to provide direct access to abutting land and access to higher systems.
C. Specific Trpe Rural or Urban Streets
10. Ereeway, expressway, or Darkway - Divided multilane roadways designed to carry large volumes of traffic at relatively high speeds. A freeway is a divided highway providing for Continuous Elow of vehicles with no direct access to abutting property or streets and with access to selected crossroads provided via connecting ramps. An expressway is a divided highway with full or partial control of access and generally with grade separations at major intersections. A parkway is a highway Eor noncommercial traffic, with full or partial control of access, and usually located within a park or a ribbon of parkiike development.
11. Residential Collector Street - A local access street which serves as a connector street between local residential streets and the thoroughfare system. Residential collector streets typically collect traffic from 100 to 400 dwelling units.
12. Local Residential Street - Cul-de-sacs, loop streets less than 2,500 feet in length, or streets less than one mile in length that do not connect thoroughiares, or serve major traffic generators, and do not collect trafミic from more than 100 dwelling units.
13. Cul-de-sac - A short street having but one end open to traffic and the other end being permanently terminated and a vehicular turn around provided.
14. Frontage Road - A local street or road that is parallel to a full or partial access controlled facility and functions to provide access to adjacent land.
15. Alley - A strip of land, owned publicly or privately, set aside primarily Eor vehicular service access to the back side of properties otherwise abutting on a street.
II. Property
A. Building Setback Line - A line parallel to the street in front of which no structure sinall be erected.
16. Easement - A grant by the property owner for use by the public, a corporation, or person(s), of a strip of land for a specific pumpose.
C. $\frac{\text { fot }-A \text { portion of a subdivision, or any other par- }}{\text { - }}$ cel of land, intended as a unit for transfer of ownership or Eor development or both. The word "lot" includes the words "plat" and "parcel".
17. Corner Lot - A lot abutting upon tino streets at Eieir intersection.
18. Double-Frontage Lot - A continuous (through) lot winch is accessible from both of the parallel streets upon which it Eronts.
19. Reverse-Erontace Lot - A continucus (through) lot which is accessible from only one of the parallel streets upon which it fronts.
III. Subdivision
A. Subdivider - Any person, firm, corporation or official agent thereof, who subdivides or develops any land deemed to be a suodivision.
20. Subdivision - All divisions of a tract or parcel oE land into Ewo or more lots, building sites, or other divisions Eor the purpose, whether immediate or future, of sale or building development, and all divisions of land involving the dedication of a new street or a change in existing streets; provided, however, that the following shall not be included within this definition nor subject to these regulations: (1) the combination or recombination of portions of previously platted lots where the total number of lots is not increased and the resultant
lots are equal to or exceed the standards contained herein; (2) the division of land into parcels greater than five acres where no street right-of way dedication is involved; (3) the public acquisition by purchase of strips of land for the widening or opening of streets; (4) the division of a tract in single ownership whose entire area is no greater than two acres into not more than three lots, where no street right-of-way dedication is involved and where the resultant lots are equal to or exceed the standards contained herein.
C. Dedication - A gift, by the owner, of his property to another parti without any consideration being given for the transfer. Since a transfer of property is involved, the dedication is made by written instrument and is completed with an acceptance.
D. Reservation - A reservation of land does not involve any transier of property rights. It simply constitutes an obligation to keep property free from development for a stated period of tine.
I. Streets and Roads:

The design of all streets and roads within shall be in accordance with the accepted policies of the North Carolina Department of Transportation, Division of Highways, as taken or modified from the American Association of State Highway and Transportation Officials' (AASHTO) manuals.

The provision of street rights-of-way shall conform and meet the requirements of the thoroughfare plan for as approved by the city and adooted by the city and the North Carolina Board of Transportation.

The proposed street layout shall be coordinated with the existing street system of the surrounding area. Normally the proposed streets should be the extension of existing streets if possible.

The urban planning area shall consist of that area within the urban planning boundary as depicted on the mutually adopted \qquad Thoroughfare Plan.

The rural planning area shall be that area outside the urban planning boundary.
A. Right-of-Way widths: Right-oE-way widths shall not be less than the following and shail apply except in those cases where right-oi-way requirements have been specifically set out in the \qquad Thoroughfare Plan.

Min. Right of way, Et.

1. Rural
```
a. Principal ArteriaI
            Freeways250
```

Other 200
b. Minor Arterial 100
c. Major Collector 100
d. Minor Collector 100
e. Local Road * 50

[^3]Min. Right oE way, Et.
2. Urذan
a. Major Thoroughiare other
than Ereeway and
Expressway
90
b. Minor ThoroughEare 70
c. Local street *50
d. Cul-de-sac **Variable

The subdivider will only be required to dedicate a maximum OE 100 Eeet of zight-oE-way. In cases where over 100 Eeet of =ight-of-way is desired, the subcivider will be zequized only to reserfe the amount in excess of 100 Eeet. In all cases in which right-oE-way is sought for an access controlled Eacility, the subdivider will only be recuired to make a reserration.

A partial width =ight-oE-way, not less than sixty (50) feet in width, may be dedicated when Edjoining undeveioped properचy that is owned or controlizd by the subdivider; provided that the width of a partial dedication be such as $t 0$ pernit the installation of such facilities as may be necessary to serre abutting lots. When the said adjoining propervy is subdirided, the remainder of the Eull required right-oEかway shall be decicated.
3. Street Nidths: Nidtis for street and road classiEicazions ocher than local shall be as recurred by the ThoroughĖare ミlan. Nidth of local =oads and streets shall be as Eollows:
a. Eocal Residential

```
Curb and gut=er section - 26 Eeet,
    to Eace oE curb
Shoulder section - 20 Eeet to edge of pave-
                                    ment, # Eoot shoulders
```

[^4]b. Residential Collector

Curb and gutter section - 34 Eeet, face to face of curb
Shoulder section - 20 feet to edge of pavement, 6 foot shoulders
C. Geometric Characteristics: The standards outlined below shall apply to all subdivision streets proposed for addition to the state aighway System or Municipal street System. In cases where a subdivision is sought adjacent to a proposed thoroughfare corridor, the requirements of dedication and reservation discussed under Right-oE-Way shall apoly.

1. Design Speed

The design speeds for subdivisions type streets shall be:

```
Desirable (Mininum)
Level Rolingg Mountainous
```

Rural

Minor Collector Roads	60	(50)	(40)	(30)
Local Roads including	50	$(50) *$	$(40) *$	$(30) *$
Residential Collectors				

Urban
Major Thoroughtares (50) (50)
Other than Ereeway or Expressway

| Minor Thoroughfares | 60 | $(50)(40)$ |
| :--- | :--- | :--- | :--- |
| Local Streets | 40 | $(50) * *(30) *$ |

-

Local Streets
40
$(40) * *(30) *$
(20)**
*Based on projected annual average daily traEEic of 100750. In cases where road will serve a very limited area and small number of dwelling units, mininum design speeds can be reduced Eurther.
**Based on projected annual average daily trafinc of 50250.
2. Maximum and Minimum Grades
a. The maximum grades in percent shall be:

Design Speed	Level	Rolling	Mountainous
60	3	4	6
50	4	5	7
40	5	6	8
30		9	10
20			12

b. A minimum grade for curbed streets nomally should not be less than 0.5%, a grade of 0.35% may be allowed where there is a high tipe pavement accurately crowned and in areas where special drainage conditions may control.
c. Grades for 100 Eeet each way from intersections should not exceed 5%.
d. For streets and roads with projected annual average daily trafinc less than 250, short grades less than 500 feet long, may be 150% greater.
3. Minimum Sight Distances

In the interest of public safety, no less than the minimum sight distance apolicable shall be provided in every instance. Jertical curres that connect each change in grade shall be provided and calculated using the following parameters. (General practice calls for vertical curves to be multiples of 50 feet. Calculated lengths shall be rounded up in each case):

```
DESIGN SPEED, MPE
Stopping Sight'Distance -
    i. Min. Stopping Distance, Et. 150 200 275 350 475
    Des. Stopping Distance, Ft. 150 200 300 450 650
ii. Min. K* Value For:
    a. Min. Crest Vert. Curve 15 28 55 85 160
    Des. Crest vert. Curve ls 28 65 145 300
```



```
        Des. SAG Vert. Curve 24 35 60 100 155
Passing Sight Distance -
    i. Min. Passing Distance,
        Eeet (2 lane)
ii. Min. K* Value For Crest
        Vertical Curve
        1100 1500 1800
        2 1 0 0
    365 686 985 1340
Sight distance provided for stopped vehicles at intersections should be in accordance with, "A Policy on Geometric Design of Rural Eighways".
4. The following table shows the maximum degree of curre and related maxinum superelevation for design speeds. The maximum rate of roadiway superelevation (e) for rural roais whit ho curb and gutter is . 08. The maximum rate of superelevation for urban streets with curb and gutter is .06 with . 04 being desirable.
```

*K is a coefzicient by which the algebraic dizEerence in grade may be multiplied to determine the length in feet of the vertical curve which will provide minimum sight distance.

E. Cul-de-sacs

Cul-de-saGs, unless exception is granted by the local planning board, shall not be more than five hundred (500) feet in lengti. The distance from the edge of pavement on the vehicular turn-around to the right-of-way line should not be less than the distance from the edge of pavement to right-of-way line on the street approaching the turn-around. Cul-desacs should not be used to avoid connection with an existing street or to avoid the extension of an important street.
E. Alleys

1. Alleys shall be required to serve lots used for commercial and industrial purposes except that this requirement may be waived where other definite and assured provision is made for service access.

Alleys shall not be provided in residential subdivisions unless necessitated by unusual circumstances.
2. The width of an alley shall be at least twenty (20) feet.
3. Dead-end alleys shall be avoided where possible, but if unavoidable, shall be provided with adeguate turn-around facilities at the dead-end as may be approved by the Zlanning Zoard.
4. Sharp changes in alignment and grade shall be avoided.
G. Permits Eor Connection To State Roads

An approved pemit is required for connection to any existing state system road. This permit is required prior to any construction on the street or road. The apolication is available at the office of the nearest District Engineer of the Divison of Eighways.
a. OEfsets To Utility Poles

Poles for overhead utilities should be located clear of roadway shoulders, preferably a minimum of at least 30 feet from the edge of pavement. On streets with curb and gutter, utility poles shall be set back a minimum distance of 6 feet from the face of curb.
I. Wheel Chair Ramps

In accordance with Chapter l36, Article 2A, s136-44.14, all street curbs in North Carolina being constructed or re-constructed for maintenance procedures, traffic operations, repairs, correction of utilities, or altered for any reason after september 1,1973 , shall provide wheelchair ramps for the physically handicapped at all intersections where both curb and gutter and sidewalks are provided and at other major points of pedestrian flow.

Wheelchair ramps and depressed curbs shall be constructed in accordance with details contained in the Departnent of Iransportation, Divison of Eigh^{-} ways, Publication entitled, "Guidelines, Curb Cuts and Ramps for Eandicapped Persons".
J. Ecrizontal Width on Bridge Deck

1. The clear roadway widths for new and re-constructed bridges serfing 2 lane, 2-way traffic should be as EOllows:
a. Shoulder Section Approach
i. Under 800 ADT Design Year

Minimum 28 feet width face to face of parapets of rails or pavement width plus 10 feet, whichever is greater.
ii. 800-2000 ADT Design Year Minimum 34 Eeet width face to face of parapets or rails or pavement width plus 12 feet, whichever is greater.
iii. Over 2000 ADT Design Year Minimum 40 feet Desirable 44 feet width face to face of parapets or rails.
b. Curbs and Gutter Approach
i. Under 300 ADT Design Year Minimum 24 feet face to face of curbs.
ii. Over 800 ADT Design Year width of approach pavement measured face to face of curbs.

Where curb and gutter sections are used on roadway approaches, curbs on bridges shall match the
curbs on approaches in height, in width of face to face of curbs, and in crown drop. The distance from face of curb to face of parapet or rail shall be l'-6" minimum, or greater iE sidewalks are required.
2. The clear roadway widths for new and re-constructed bridges having 4 or more lanes serving undivided two-way traffic should be as follows:
a. Shoulder Section Approach width of approach pavement plus width of usable shoulders on the approach left and right. Min. 8^{\prime} Des. 10'
b. Curb and Gutter Approach - width of approach pavement measured face to face of curbs.

Wake County
Thoroughfare Plan

[^0]: *Projections were provided by the North Carolina Department of Administration.

[^1]: НसHER , SCME

[^2]: The overall speed is the totai distance traveled divided by the total time required，including all ここミEミミc delays．

[^3]: *The desirable minimum right-of-way is 60 feet. If curb and gutter is provided, 50 feet of right-ofoway is adequate on local residential streets.

[^4]: *The desirable minimun $=$ Gght-of-way is estabiished as 50
 is aciequate.
 **The right-oE-way dimension will depend on zadius used for vehiculaz tum-around. Distance from edge of pavement Of tum around to right-oE-way should not be less than distance from edge of pavement to right-oE-way on screet approaching Junn-around.

